MK1000A Combined Overcurrent \& Earth-Fault Relay User's Guide

A BRIEF OVERVIEW

1. General Description

The MK1000A combined overcurrent and earth-fault relay is a microprocessor based numerical relay. It uses fundamental frequency current measurement for excellent harmonic current rejection. The relay provides three independent phase overcurrent elements and one non-directional earthfault element. All these elements are connected to the current transformers of the feeder to be protected.

The overcurrent and the earth-fault elements consist of independent low-set units and high-set units. The time current characteristic of the low-set units are selectable between inverse definite minimum time (IDMT) normal inverse curve $3 / 10$, normal inverse curve $1.3 / 10$, long time inverse curve, very inverse curve, extremely inverse curve and definite time. The high-set units are the definite time type, instantaneous tripping is made possible by setting the time to minimum.

The MK1000A incorporates a 4-digit LED indicator which allows direct numerical readout of set values, actual measured value, recorded value and system indication. All current measurements and current settings are based on 5A current transformer (CT).

2. Light indication

The indicators display the status of the system as follow:

LED Indicator					Status
Aux	\|>	\|>>	FUNCTION	DATA	
0	0	0	0	0	No Auxiliary power supply.
1	0	0	X	X	Normal condition, no tripping.
1	1	0	X	X	Low-set triggered, time delay countdown started.
1	0	1	X	X	High-set triggered, time delay countdown started.
1	B	0	B	B	Low-set tripped, Function LED indicates tripping source, Data LED shows tripped value.
1	0	B	B	B	High-set tripped, Function LED indicates tripping source Data LED shows tripped value.
1	X	X	B	1	Programming mode.

Table 1:System Status

$$
\begin{aligned}
& 1=\mathrm{ON} \quad 0=\mathrm{OFF} \quad \mathrm{X}=\text { don't care, not blinking } \\
& \mathrm{B}=\text { blinking }
\end{aligned}
$$

Indicator		
FUNCTION	DP	DATA
0	off	Earth-fault current.
1	off	L1 load current.
2	off	L2 load current.
3	off	L3 load current.
0	blink	Previous earth-fault tripped current.
1	blink	Previous L1 tripped current.
2	blink	Previous L2 tripped current.
3	blink	Previous L3 tripped current.
4	off	Overcurrent low-set current setting.
5	off	Overcurrent time multiplier/ delay setting.
6	off	Overcurrent high-set current setting.
7	off	Overcurrent high-set delay time setting.
8	off	Earth-fault low-set current setting.
9	off	Earth-fault time multiplier/ delay setting.
A	off	Earth-fault high-set current setting.
b	off	Earth-fault high-set delay time setting.
c	off	Soft switch setting.

Table 2: Function Codes

Note: Under normal operating condition, The 4-digit display is off. When the RESET key is pressed, the 4-digit display will light up. The display will switch off automatically after 6 minutes if no further key is pressed.

3. Push-buttons Operation

a) Trip Test

Press the "TEST" button to simulate a trip condition.
b)Trip Reset

Press the "RESET" button to reset the relay when tripped.

c) View Setting

When the relay is not under tripped condition, pressing the "RESET" button will scroll through the various functions. The sequence of selection is as follow:

Figure 1:Scroll sequence
Programable items

d) Programming Setting

To program the setting for $|>, k t>,| \gg, t \gg, l o\rangle, k t o>$, lo>>, to>>, soft SW1, soft SW2, soft SW3, soft SW4 and soft SW5.

Step1: Press "RESET" key until the Function LED shows the required function.

Step2: Press the "UP" and "DOWN" key simultaneously to enter programming mode. The Function LED blinks to indicates the relay is in programming mode.

Step3: Use the "UP" or "DOWN" key to select the desired value.

Step4: To save the selected value, press the "UP" and "DOWN" key simultaneously again. It will exit the programming mode with the Data LED displaying the newly set value.

Example 1: To set overcurrent low-set setting from $5 A(100 \%)$ to $6 A(120 \%)$

Procedures	Expected Output	Display
(i) Press "Reset" key until overcurrent low-set setting function. i.e. Function 4.	Function LED shows "4". Data LED shows default setting is 5.00 A	4 ¢ 4
(ii) Press "Up" \& "Down" keys simultaneously.	Function LED blinks. Relay is in programming mode.	
(iii) Press "Up" key to alter the setting until desired value display. i.e. 6.00	Data LED shows set value increasing until it shows "6.00"	
(iv) Press "Up" \& "Down keys simultaneously tosave new value and programming mode.	Function LED stop blinking, DATA LED displays the new setting. i.e. 6.00	41810

4. Output Contacts

The MK1000A has two relay outputs (R1 and R2). The output contacts can be programmed as follow:

- linked to overcurrent trip signal.
- linked to earth-fault trip signal.
- manual reset or auto reset type.

For auto reset type, the contact remains activated until the fault current is removed.

For manual reset type, the contact remains activated even with the removal of fault current. This contact can only be reset by pressing the "RESET" key.

5. Soft Switches

The MK1000A incorporates 5 soft switches for system configuration. When the Function LED shows " c ", the relay is in"soft switch setting" mode.

switch number (SW)
Figure 2: Soft switch indication

Example 2: To change contact R1(linked to overcurrent \& earth-fault) from auto reset to manual reset.

Procedures	Expected Output	Display
(i) Press "Reset" key until soft switch 1 setting function.	Function LED shows "c". Switch number (SW) shows "1" Switch value (SVL) shows "03"	
(ii) Press "Up" \& "Down" keys simultaneously.	Function LED blinks. Relay is in programming mode.	:1\%)
(iii) Press "Up" key to alter the setting until desired value display.	Switch value (SVL) changed to "13". (refer table 3 for soft switch configuration)	シ1\%
(iv) Press "Up" \& "Down keys simultaneously to save new value and exit programming mode.	Function LED stop blinking, Switch value(SVL) shows the new setting. i.e. "13"	-1年

To exit programming mode without saving the selected setting, press the "RESET" key once.

Example 3：To change overcurrent low－set IDMT characteristic from normal inverse $3 / 10$ curve to long time inverse curve．

Procedures	Expected Output	Display
（i）Press＂Reset＂key until soft switch 4 setting function．	Function LED shows＂c＂． Switch number（SW）shows＂4＂ Switch value（SVL）shows＂00＂	
（ii）Press＂Up＂\＆＂Down＂keys simultaneously．	Function LED blinks．Relay is in programming mode．	
（iii）Press＂Up＂key to alter the setting until desired value display．i	Switch value（SVL）changed to＂02＂．（refer table 3 for soft switch configuration）	
（iv）Press＂Up＂\＆＂Down keys simultaneously to save new value and exit programming mode．	Function LED stop blinking， Switch value（SVL）shows the new setting．i．e．＂02＂	－ハ｜ゼロ

SW	SVL	System configuration
1	$\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	R1 auto reset type，linked to O／C． R1 auto reset type，linked to E／F． R1 auto reset type，linked to O／C \＆E／F． R1 manual reset type，linked to O／C． R1 manual reset type，linked to E／F． R1 manual reset type，linked to O / C \＆E / F ．
2	$\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	R2 auto reset type，linked to O／C． R2 auto reset type，linked to E／F． R2 auto reset type，linked to O / C \＆E／F． R2 manual reset type，linked to O／C． R2 manual reset type，linked to E／F． R2 manual reset type，linked to $O / C \& E / F$ ．
3	$\begin{aligned} & \hline 00 \\ & 01 \\ & 10 \\ & 11 \end{aligned}$	E／F high－set disabled；O／C high－set disabled． E／F high－set disabled；O／C high－set enabled． E／F high－set enabled；O／C high－set disabled． E／F high－set enabled；O／C high－set enabled．
4	$\begin{aligned} & 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \end{aligned}$	O／C Normal Inverse curve 3／10． O／C Normal Inverse curve 1．3／10． O／C Long time Inverse curve． O／C Very Inverse curve． O／C Extremely Inverse curve． O／C Definite time．
5	$\begin{aligned} & \hline 00 \\ & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \end{aligned}$	E／F Normal Inverse curve 3／10． E／F Normal Inverse curve 1．3／10． E／F Long time inverse curve． E／F Very inverse curve． E／F Extremely inverse curve． E／F Definite time．

Table 3：Soft switches setting E／F＝Earth－fault O／C＝Overcurrent

6．Technical Data

Ratings

Rated current／n ．．．．．．．．．．．．．．．．． 5 A
Frequency ．．．．．．．．．．．．．．．．．．．．．．．．．． 50 or 60 Hz
Burden

Auxiliary Supply
Supply voltage
MK1000A－240A（6）．．．．．．．．．．．．198～265 VAC
MK1000A－240AD（6）．．．．．．． $100 \sim 240$ VAC

MK1000A－24D ．．．．．．．．．．．．．．．．． $18 \sim 370$ VDC
（ 72 VDC
Supply frequency ．．．．．．．．．．．．． 50 Hz or 60 Hz
VA rating ．．．．．．．．．．．．．．．．．．．． 3 VA typical

Setting Ranges

（i）Overcurrent elements

Low－set setting｜＞．．．．．．．．．．．．．．．．．．．0．50－10．00 A（10\％－200\％）
Low－set time multiplier kt＞．．．．．0．05－1．00
Low－set definite time t＞．．．．．．．．．0．05－99 s
High－set setting l＞＞． ．0．50－99．9 A（10\％－1998\％）
High－set definite time t＞＞． 0．05－2．5 s

（ii）Earth－fault elements

Low－set setting $\mathrm{I}_{0}>\ldots \ldots0 .10-5.00 \mathrm{~A}(2 \%-100 \%)$
Low－set time multiplier $\mathrm{kt}_{\mathrm{o}}>. .0 .05-1.00$
Low－set definite time $\mathrm{t}_{\mathrm{o}}>$ ．．．．．．．0．05－99 s
High－set setting $\mathrm{I}_{0} \gg$ ．．．．．．．．．．．．． $0.10-50.0 \mathrm{~A}(2 \%-1000 \%)$
High－set definite time t＞＞．．．．．．．0．05－2．5 s

Outputs

Trip Contacts（R1\＆R2）：
Rated voltage
． 250 VAC
Continuous carry $.5 \mathrm{~A}(\cos \varphi=1.0)$
Make and carry for 0.2 s 30A
Expected electrical life $.10^{5}$ operations
Expected mechanical life ．． 5×10^{6} operations

Indicators

Auxiliary supply	．Green LED indicator
Pick up ．．．．．．．．．．	．Red LED indicator
Trip ．．．．．．．．．．．．．．．	．7－segment LED and red LED indicators
Mechanical	
Mounting	．Panel mounting
Front panel ．．．．．	Standard DIN 96x96
Approximate weig	0.75 kg

7．Case Dimension

Figure 5：Case dimension

8. Connection Diagram

9.Time-current Characteristic

Normal Inverse 3/10

Normal Inverse 1.3/10

Very Inverse

Long-time Inverse

Extremely Inverse

